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 SYNOPSIS

This paper -present the use of transfer matrices in the seismic .analysis of tall buildings.
1t is assumed in this work that most tall building structures can fit a mathematical

model consisting of both-a pure shear and a pure bending beams fixed at their bases and
continuously connected through the height. The overal! stiffness parameters characterizing the

mode} are generated by addition -of the individual values of each building substructure. A

linear - differential equanon is formed’ and solved using  the - transfer matrix. discretization

-technique.

The method glves fau]y accurate results compared to standard matrix analyms solutlons -

and provides a fast tool for preliminary . design.

For the case of regular buildings, 2 set of graphs defining the main results of - the |
analysis as a function of ‘the stiffness parameters are given, and their -use could further reduce

the computational efforts.

" Finally two -examples show some of the appllcauons of the method.

MATHEMATICAL MODEL .-

Figure 1 shows a structural model consisting of

a shear beam and a slender beam fixed at the base
- and continuously connected through the height H,
such that for any distributed lateral load. p(x), both
beams have the same deflected shape. .

The model is characterized by two stiffness
parameters, C,(x) and Cy(x) given by -

Cy(x) = A (x) and  Cy(x) = EIx) ...(D)

where &

beam .
A = cross sectional area of the shear beam
x = ghear shape factor.of the shear beam ..
E = modulus of elasticity of the slender beam -
1

= ¢ross sectional moment: of 1nema of the -

slender beam

Denoting by py(x) and pz(x) the iateral loads per
unit length acting on the shear and the slender. beam

tespectively, the following express:ons can be‘.

written
Pr(x)=—[Cix) y’(x)]' :

PEO=ICE Y@ )

where primes denote dlﬁ'erentlatlon w1th respect
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G = shear modulus of ela.sticlty of the shear

to Xx.
From equﬂ:bnum :

G Y — (G Y G =p) oc3)

.Equation (3)1s the 'governing differential equation

for this model under any distributed lateral load.

" This equation can- be easily extended to merna

forces and becomes :

Zlew axzj ax[cl() ]——m 2 e

where w(x) is the mass per unit length.
Using separation- of variables such that :

D= TO )

*the modal equa.tlon (6) is obtained

- [C() ¢ (Y —[C(%) ¢'(3)]) = %u(x) ¢(x) (6)

o is the parameter that represents the natural - fre-
quencies of ‘the system and ¢(x) represents the

normal modes of v1brat10n The boundary condx- -
-tlons are :

1) eoo=0 5 14 (x)|x=o—o SR C))
14>"(x) o =05 [{Co(3)$" (X)) ~{Cs3) §' () bae=0

Analytical solutions of cquatxon (6) are “possible In -
a very limited number of cases so that numerxcal

-techmques should be generally used
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In this paper. the transfer matrix method is used,
defining & state vector {Ss} at a position x; by

( $ (x1)
¢ (x)
{Si}=i¢"(xi)
Q (xp) o _
where Q(x;) represents the total shear force at
position x;. ] _
From the state vector at x;-it is possible to
obtain an approximation of the state vector at a
neighbour position x4, using Taylor series and
equilibrium equations. Such relation becomes

e | T (L)
E'¢,(xi+i) I 0 . (1.%%’5)
e o @
h Q(xi+3)1. _—co%d —‘—"—t;—lz

! 13 the length of the interval i, i—};l (I=xi5;,—x;yand -

w, Gy, G and G

are the average values of .u(x),
Cl(x),

Colx) and C,'(x) in the interval.
i} =[Tiqa, 1 {Sg}

station { io siation i+1.

Equation (10} is used from i=0 to i=n where
¥p=H and the transfer matrix [Ty,.] from base to
top of the model is given by -

[Tn,o]={Tn,n—1} {Tn—l,‘n-zl- . "['TI,O] : (1 1—)

Explicitly : - Y
¢ (H) Ty T T Ty ¢ (0)

¢’ (H)}zlr'rn Tee Tes Ty 55." (0) .(12)
$"(H) Ty T Ty Ty, (0
Q(H)) ]..Tu' Tpe Tas Ta 0 ()]

Using the boundary condifions 0 = $(0) = ¢'(®)
= ¢"(H) = Q(H), nontrivial solutions ~correspond
1o the condition j o e :

A_=T33T4;_T34T¢3:0.
which is satisfed by .7 different values of w. -.In
structural analysisit is importantto know the lowest
frequencies, generally the first' threé. to five. The
- trapsfer matrix technique gives good accuracy with a
small number of intervals. S

REPRESENTATION OF ACTUAL
"STRUCTURES

An actual structure is 2 set of substructures such -

as walls, frames, etc. Itis assumed {2) that subsiructure

...(8)

S o)

where [Ty, i} is defined as the transfer matrix from _

: .'..(135' \

J has stiffness parameters Cjy and Cj; and satisfies
the squation :

G —[Cus) ¥ =Pyx) . (14)

i y(x)'denotes the defiected shape of the complete
structure under a distributed lateral load p(x),

* -geometric.compatibility and equilibrium lead to :

G ¥ () —1C0) ¥ ()Y =p(x)
which. coincides
equation (3).

..(15)

-with the governing differential

; ~ _ [ 95(7‘9. }
C,'? I* '

-~ — ¢ (xq) '
( 2C, J 26, ; i ¢ 9
/ C, . :

I— =l TxD
( G, 2 i b
Ll

- X
Z 1 ] Q( ) J

In-equation (15)

Co)=> Cyy(x)

=
Cix)=> Cy(»); and
. : i=1 o
m = number of substructures - .o(16)

It can be noted that the ‘problem has been
reduced to .the determination of the individual
stiffness barameters of the substructure types that are
present 1n actual-structures. :

Some examplés of actual substructure types are:
__Slender walls @ - Cy=0; ’ Cyy o (ED) o ,

—Frame with relatively stiff beams {axial deformations
not included) - _ ' R

Cy=h D @Ki; Cy=0 | "
where # is'the ° story ~ height, (g K3), is the:réduccd -
shear stiffness of column 7 of the I frame computed

by Muto’s method (3).

- For prismatic columns, <= </ L
o K. GAT1ZEL

- —Frame with relatively slender beams (axial defor-

mations not included)

o=t Serats s CumS
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where £ is the storv height, {¢ Ky),is the reduced

stiffness of the beam at span 7, 1;is the length of
the span 7 measured between column axis

For prismatic beams, — Kn “GA IZEI

where I, is the free length of the i—r span. - Para-
meter @ is computed by Muto’s method interchanging
beams and columns. If axial deformations have to
be included, as it is the case of two walls connected

by beams, C,; and C,y change to incorporate some -

contribution of the area in the. moment of inerfia of
the cross section (1).

ANALYSIS OF BUILDINGS WITHOUT .
SETBACKS

Most of tall building "structures are regular in
plan and composed of frames of constant properties
through the whole height of the buildings, and walls
with constant length and constant or linearly
decreasing thicknesses. Figures 2 to 16 may be used
in order to obtain a fairly good estimation of the
responsz of such structures under seismic loading.-

C; and w are supposed to be constant. The
variation of wall thicknesses is fakenm into account
by means of the following parameters :

Clx=0LC, (X=H)

Ce= 2

- (:(l--c)} Colx=H) . o

e N E =) 10017
. (17)

e G

C,

The graphs have been prepared - for 25‘7”
(usual )

and they can be used for B from 0 to 50
tange of variation) with an error less than 5 /

First three naturaI frequenmes are obtauned by'
the formula .
oHE - e — (18)

{01=81 B

The frequency coefficient -8y is obtamed from :

figure 2. 7 denotes mode number.

The equivalent masses for the .computation of

the base shear for the first three modes are obtained -

by

m} s given'in figure 3.

Manimum base shear for the ﬁrst three modes is

computed by

- C,(x) Yi(x)and Qux) = Q(x) —
-each mode by the shear beam and..the slender beam -.
.- of the model; then it is easy to compute .the shear

Myl 't;;.;.'.ag)

Qo=M} Sii o ...(20)
where S._ ; 1s the value of pseudo accelarations s;uectrum

corrcsponoing to natural frequency o; of mode 1.

The deflected shape :

=28 5 o

| 1(E_
where Fj—_——HI 7i(x) dx is the scaling factor for mode
K 4]

i,-and its first derivative

(x) o (22)

are computed for fhe first three modes with the

~values of F, figure 4, -and the ‘ values - of y(x) -and

¥'(x) from figures 5, 6; 9, 10; 13, 14.

The defiected shape is used for the demgn of
separations between buzid1ng> or parts of a building;
its first derivate is used for checking the reiatwe

'mter-storv displacernent,

Shear and overturning moment diagrams for the
whole building structure are: obtained for the first
mode by

.-.tzs)

L Q=Qs ) %
Mi(j=QuHM,(x) } -

where Qlkx) and Mi (x) are given in figures 7, 8 ; 1,,

12; 15,1

-The method aiso gives - the shea.r forcns Q, (x)

diagram of each frame and wall, by just distributing
the partial shear dlacrams in- proportion to. the

Cyy or Cy respectwely {j _] substructure) Propemes

~for the first three modes are then . superposed
- according to design code provisions :

EXAMPLES'

' In order to show the apphcatlons of the tpchmque ‘

described in this paper, two examples are prbsented
Metric tons, meters and seconds are used.

.The first example (ﬁgure 17 a) is a 70-story

- shear wall-frame bmldlng Geometncal and mecha-
‘_ nical propertles are .

“E = 3.500.000 [t/m?]
G = 1.400.000 [t/m?

Q.0 carried for .

RERPPIPRTLNE PR O o
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| ! . !
Beams ! " Columns i : { : ' :

Story %  width ] ] width ). 1 .Wa}_i [tr};]xlckness- { W?t%ht ‘ Hfg;]l

‘ depth [m) ' " depth [m] | : i
| | ! } |

20 0.70/1.00 0.70/0.70 0.20 . 200 2.80
1016 ‘do 0.76/0.70 10:20 400 ) do
1511 ~ do ~0.80{0.80 - 0.25 400 do
10— 6 do 0.90/0.90 0.25 400 - - do
5—1 © do 1.00/1.00 0.30 400 do

e

Stories are indexed starting from the bottom. -

Next table shows some comparative results using:
(a) Discrete matrix solution, neglecting axial and
shear deformations in the elements;

{b) transfer matrix method and- Muto 5 approach
to determine Ci{(x) and Cy(x):

{c) graphical solution using figures'l and 2 and
mean values for C,and C,.

Vibration parameter E Case (a) . Case (b) | Case (¢)
i ! ‘
Ist. period [sec] 17117 0.882 0.867 )
2nd. period [sec} 0.252 0.223 - -0.216
3rd. period [sec) 0.097 0.092 0.090
ist. eguivalent mass [%] 63.9 - 65.5 66.8
2nd. equivalent mass {%] 17.9 . 13.7 12.8

3rd. equivalent mass [%] 6.3 P59 0 6.0

Figure 17 b. shows the first mode shape obtainéd » L

from cases (2) and (b) respectively.

The second example (figures 184 and 18 b)
consists of a 14-story shear wall bulidlng havmg a
setback at the fifth floor. -

Geometrical and mechanical properties are:
E=3,000,000 {¢/m?%]
Shear deformations are neglected

No, of { No.-of j- - .
St 8 [m] 4 Tm) | Thickness|] Weight | Height
ory jength | length o [y g - . fm]
walls w_alls _ . .

14 1 4 025 .. .200 3.0
13—-10 1 4 0,25 ..:__';‘-400.‘ o2 3.0
9g— 5 1 4 ©0.30 S 400 --3.0 )
4— 1 3 4 3.0

0.40 1200

Results obtained by a discrete matrix solution (a)
and transfer matrix method (b) are

Ca;e. (@) } .

Vibration parameter !I Case (b) ~
“1st. period [sec] - - C 1194 1229
2nd. period [sec) : 0.242 - 0.239.
3rd. period [sec) - 0.106 _ 0.101.
Ist. equivalent mass [ %] 40.0 ‘ 38.2
2nd. equivalent mass {9 . .26.1 212
3rd. equivalent mass [%] - 14.1 . 13.7 .

‘Figure 18 c. shows the first roode shape for both

:gsolutions. They can not .be dlﬁerentlated in the

graphical representation.

- The method to analyze structures under the action

~ of seismic loading proposed in ~ Refer. (2), provides
‘a fast tool to make a vpreliminary design.’ The
accuracy of the results, however depend very much
.on the values of the stiffness parameters of the

structural components

The second cxample given In the text shows a
close agreement of the main vibration. parameter
values as compared to those obtained from a discrete
matrix model. The results of the first example, how-

ever, do not ‘have such a good agreement, showing:
the effect of the approximation used for the caleu-

lation of theframe stiffness parameter.

"The authors are presently working ‘on"a revised

version of the model to improve the estimation ofthe -

stiffness parameters and at the same . time to enable

- the users to include some additional effects such as

foundation rotation, axial and shear def ormatlon and
non linear behaviour. - -
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